A Predictive Control Perspective on Electricity Markets

Victor M. Zavala

Assistant Computational Mathematician Mathematics and Computer Science Division Argonne National Laboratory

vzavala@mcs.anl.gov

With: Mihai Anitescu and Aswin Kannan

UIUC Seminar May 5th, 2011 (Cinco de Mayo)

Outline

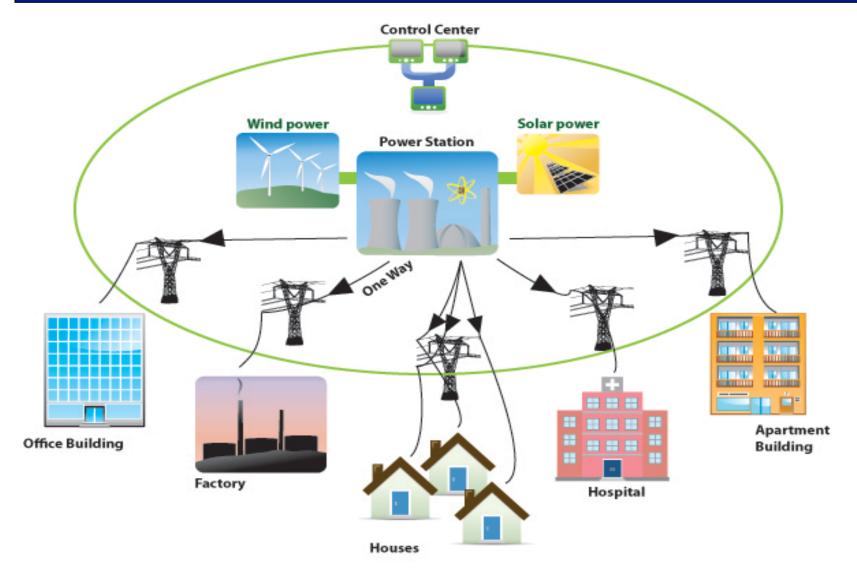
1. Motivation

Next-Generation Power Grid Market Volatility and Instability

- 2. Predictive Control Framework
 Market as Receding Horizon Game
- 3. Stability and Robustness
 Finite Horizons, Incomplete Gaming, & Forecast Errors
- 4. Numerical Examples
- 5. Conclusions and Open Questions

1. Motivation

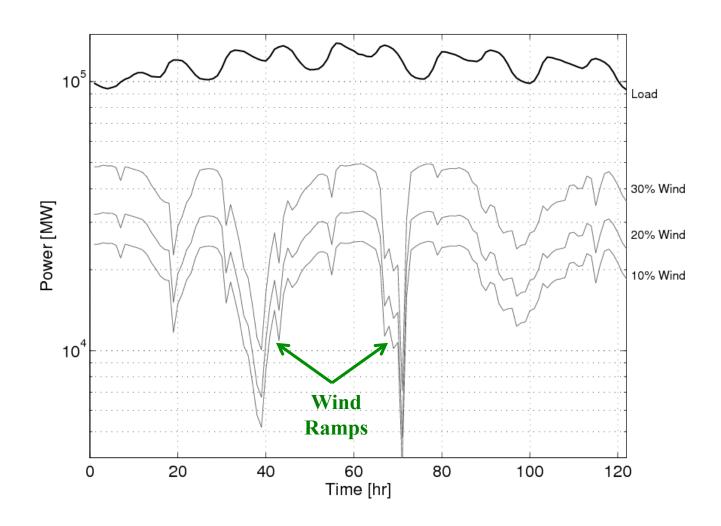
Current Grid



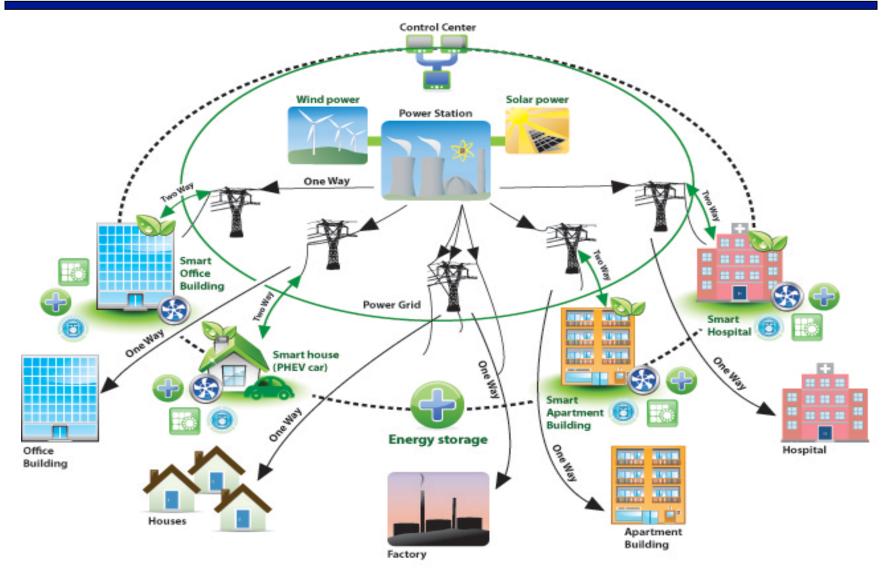
~ 70% Electricity from Central Coal Plants – CO₂ Emissions
Limited Market Control – Demands are Inelastic, No Storage, Slow Generation
Cannot Sustain High Renewable Supply -Intermittent-

Renewable Supply

Supply -Wind- and Elastic Demands Vary at <u>Higher Frequencies</u>



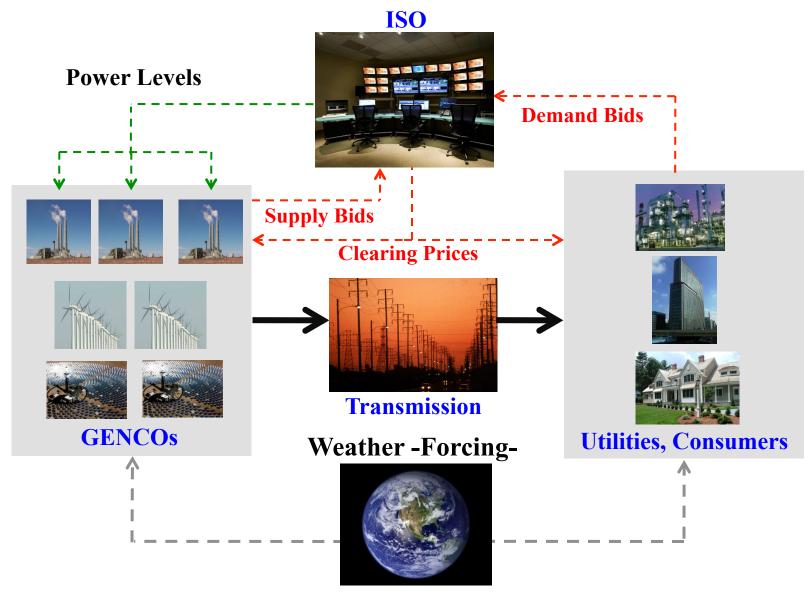
Next-Generation Grid



Major Adoption of Renewables -30%-

Real-Time Pricing + Demand Response - <u>Elastic</u> Demands-Huge Investments in Natural Gas Generation –Faster Response-

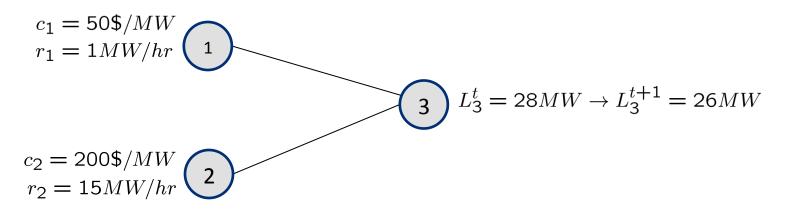
Electricity Markets



Dynamic & Uncertain <u>Forcing Factors</u> -Weather- Drive Markets

<u>Volatility</u> Due to Market Friction: (Capacity, Ramping, Congestion)

Market Instability and Ramp Constraints



$$\lambda^t = 50\$/MW(28,0) \rightarrow \lambda^{t+1} = 50\$/MW(26,0)$$

Ramp Constraints (No Foresight)

$$G_{t-1}^1 = 27MW$$

 $G_{t-1}^2 = 1MW$ $\lambda^t = 50\$/MW(28,0) \to \lambda^{t+1} = 0\$/MW(27,0)$

Ramp Constraints (No Foresight)

$$G_{t-1}^1 = 26MW$$
 $\lambda^t = 50\$/MW(27,1) \to \lambda^{t+1} = 50\$/MW(26,0)$ $\lambda^t = 50\$/MW(27,1) \to \lambda^{t+1} = 50\$/MW(26,0)$

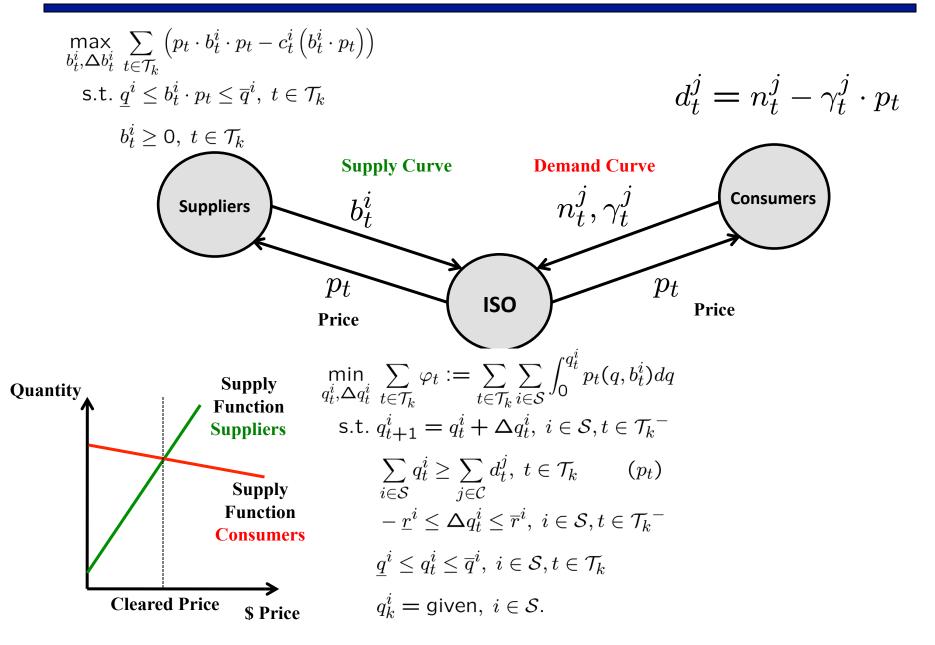
Ramp Constraints (with Foresight)

$$G_{t-1}^1 = 27MW$$
 $\lambda^t = 55.35\$/MW(27,1) \rightarrow \lambda^{t+1} = 50\$/MW(26,0)$ $\lambda^t = 55.35\$/MW(27,1) \rightarrow \lambda^{t+1} = 50\$/MW(26,0)$

Ramps Lead to Market Volatility – <u>Propagation</u> Through Initial Conditions (Need Foresight)

2. Predicti	ive Control 1	Framework		

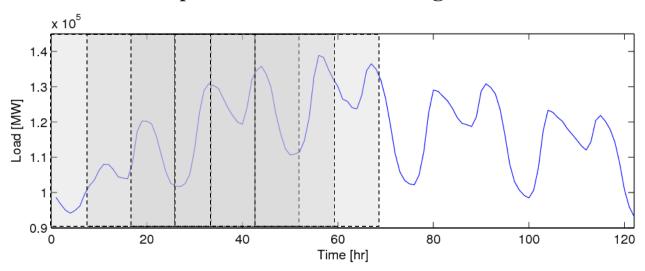
Predictive Control Framework



Current Market Design: Game Runs Incompletely (Jacobi-Like Iteration)

Predictive Control Framework

Current Markets: Game Implemented Over Receding Horizon – Load



At k solve over $\mathcal{T}_k = \{k,...,k+T\} \Rightarrow$ Implement Price p_k

At k+1 solve over $\mathcal{T}_{k+1} = \{k+1, ..., k+1+T\} \Rightarrow$ Implement Price p_{k+1}

Key Issues:

- How to Measure **Dynamic** Market Stability?
- Stability Under Finite Horizon
- Stability Under Incomplete (Suboptimal) Gaming
- Robustness Bounds
- Effect of Market Design: Frequency, Horizon, Strategic, Stabilizing Constraints
- Effect of Mechanistic Effects: Ramps, Topology, Congestion

3. Stability and Robustness		

Market Stability (A Proposal)

Constrained Market Clearing

$$\begin{split} \min_{q_t^i, \Delta q_t^i} & \sum_{t \in \mathcal{T}_k} \varphi_t := \sum_{t \in \mathcal{T}_k} \sum_{i \in \mathcal{S}} \int_0^{q_t^i} p_t(q, b_t^i) dq \\ \text{s.t.} & q_{t+1}^i = q_t^i + \Delta q_t^i, \ i \in \mathcal{S}, t \in \mathcal{T}_k^- \\ & \sum_{i \in \mathcal{S}} q_t^i \geq \sum_{j \in \mathcal{C}} d_t^j, \ t \in \mathcal{T}_k \qquad (p_t) \\ & -\underline{r}^i \leq \Delta q_t^i \leq \overline{r}^i, \ i \in \mathcal{S}, t \in \mathcal{T}_k^- \\ & \underline{q}^i \leq q_t^i \leq \overline{q}^i, \ i \in \mathcal{S}, t \in \mathcal{T}_k \\ & q_k^i = \text{given}, \ i \in \mathcal{S}. \end{split}$$

Unconstrained Market Clearing (Marginal Cost)

$$\begin{aligned} & \underset{q_t^i}{\min} & & \sum_{t \in \mathcal{T}_k} \varphi_t = \sum_{t \in \mathcal{T}_k} \sum_{i \in \mathcal{S}} \int_0^{q_t^i} p_t(q, b_t^i) dq \\ & \text{s.t.} & & \sum_{i \in \mathcal{S}} q_t^i \geq \sum_{j \in \mathcal{C}} d_t^j, \ t \in \mathcal{T}_k & (\bar{p}_t) \\ & & & \underline{q}^i \leq q_t^i \leq \overline{q}^i, \ i \in \mathcal{S}, t \in \mathcal{T}_k, \end{aligned}$$

Property: For Fixed b_t^i , $ar{arphi}_t \leq arphi_t, orall t \in \mathcal{T}_k$

Definition: Market Efficiency. $\eta_t = \frac{\bar{\varphi}_t}{\varphi_t} \in [0,1]$

Definition: Market Stability. The market given by the ISO/Supplier/Consumer game is stable if, given $\eta_0 \in \{\eta \mid \eta \geq \epsilon\}$ we have generation and demand sequences such that $\eta_t \in \{\eta \mid \eta \geq \epsilon\}$, $\forall t$.

Lyapunov Stability

Lyapunov Function = **Indicator Function** (Sufficient Conditions, Compare Designs)

Definition: Market Summarizing State.

$$\delta_{t+1} = \alpha(\eta_{t+1}, \epsilon) \cdot \delta_t$$
 with $\alpha(\eta, \epsilon) \leq 1$ iff $\eta \leq \epsilon$.

Observations: - Market Stability Implies Stability of Origin for Summarizing State- **Maximizing Efficiency Implies Minimizing Summarizing State**

Abstract ISO Clearing Problem:

Candidate Lyapunov Function.

$$V_T(\delta_k, d_{\mathcal{T}_k}) := -\sum_{t \in \mathcal{T}_k^-} (\delta_{t+1} - \delta_t) = \delta_k - \delta_{k+T}.$$

Lyapunov Stability

Infinite Horizon: If game with horizon $T=\infty$ is feasible then, the market is stable.

Proof:

$$\begin{split} \Delta V_T(\delta_k) &= V_\infty(\delta_{k+1}, m_{\mathcal{T}_{k+1}}) - V_\infty(\delta_k, m_{\mathcal{T}_k}) \\ &= \sum_{t=k+1}^\infty (\delta_t^{k+1} - \delta_{t+1}^{k+1}) - \sum_{t=k}^\infty (\delta_t^k - \delta_{t+1}^k) \\ &= \left(\delta_{k+1} - \delta_\infty^{k+1}\right) - \left(\delta_k - \delta_\infty^k\right) \\ &= -\left(\delta_k - \delta_{k+1}\right) \\ &= (\alpha(\eta_{k+1}, \epsilon) - 1) \cdot \delta_k \quad \text{Accumulation Term} \\ &\leq 0 \end{split}$$

Finite Horizon: Define Terminal Cost:

$$\Xi_k^1 := |V_T(\delta_{k+1}, m_{\mathcal{T}_{k+1}}) - V_{T-1}(\delta_{k+1}, m_{\mathcal{T}_k})|, \ \Xi_k^1 \to 0, \ T \to \infty$$

Finite Horizon: If game with horizon $T < \infty$ is feasible and the terminal cost is bounded by accumulation term, then the market is stable.

Proof:

$$\Delta V_T(\delta_k) = V_T(\delta_{k+1}, m_{\mathcal{T}_{k+1}}) - V_T(\delta_k, m_{\mathcal{T}_k})$$

$$= (\alpha(\eta_{k+1}, \epsilon) - 1) \cdot \delta_k + \Xi_k^1$$

$$< 0$$

Properties:

- Price Volatility Increases with Ramp Limits $||p_t \bar{p}_t|| \le L(||\bar{r} \bar{q}|| + ||\underline{r} \underline{q}||)$
- Key Outcome: Incomplete Game Cannot be Guaranteed to be Stable
 - Stabilizing Constraint "Filters Out" Suboptimal Bids

Robustness

Effect of Forecast Errors

Define Cost Perturbation:

Predicted State with Forecast
$$\equiv_k^2 := |V_T(\bar{\delta}_{k+1}, m_{\mathcal{T}_{k+1}}) - V_T(\delta_{k+1}, m_{\mathcal{T}_{k+1}})|.$$

Key: Boundedness of Perturbation Requires Game Numerical Stability

Numerical Stability: If at a solution of the game the players problems satisfy LICQ and the <u>clearing prices are bounded away from zero</u>, the game is stable and the solution is Lipschitz continuous on the data.

$$\max_{\substack{b_t^i, \Delta b_t^i \\ \text{s.t. } \underline{q}^i \leq b_t^i \cdot p_t \leq \overline{q}^i, \ t \in \mathcal{T}_k}} \sum_{\substack{t \in \mathcal{T}_k \\ b_t^i \geq 0, \ t \in \mathcal{T}_k}} \left(p_t \cdot b_t^i \cdot p_t - c_t^i \left(b_t^i \cdot p_t \right) \right)$$

$$p_t \to 0 \text{ Destroys Curvature (Excess Supply)}$$

Robust Finite Horizon: If game with horizon $T<\infty$ is feasible and the terminal cost and cost perturbation are bounded by accumulation term, then the market is stable. Proof:

$$\Delta V_T(\delta_k) = V_T(\delta_{k+1}, m_{\mathcal{T}_{k+1}}) - V_T(\delta_k, m_{\mathcal{T}_k})$$

$$= (\alpha(\eta_{k+1}, \epsilon) - 1) \cdot \delta_k + \Xi_k^1 + \Xi_k^2$$

$$< 0$$

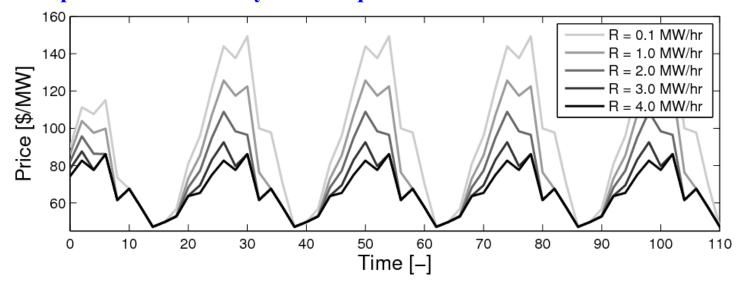
4.	Numerical	Exampl	les
-----------	-----------	--------	-----

Dynamic Electricity Markets

Supply Function-Based Dynamic Game Models Kannan & Zavala., 2010

- Linear Complementarity Problem

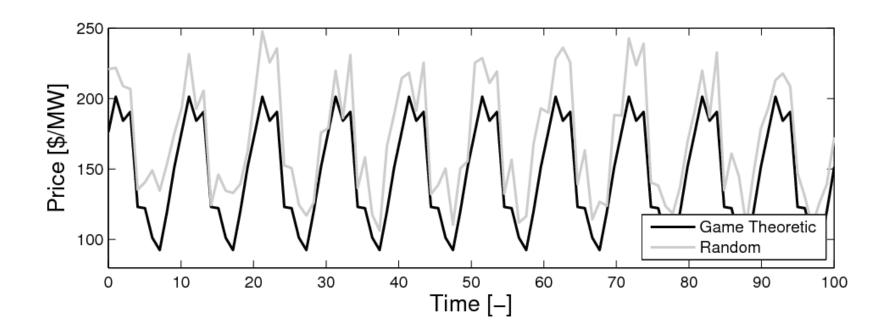
Effect of Ramp Constraints on Dynamic Equilibria



Dynamic Electricity Markets

Non-Gaming Behavior

Some Players -Intentionally or Unintentionally- Bid Suboptimally Introduces Noise in Equilibrium – Can be Inferred from Data



Huge Potential for Dynamic Market Models

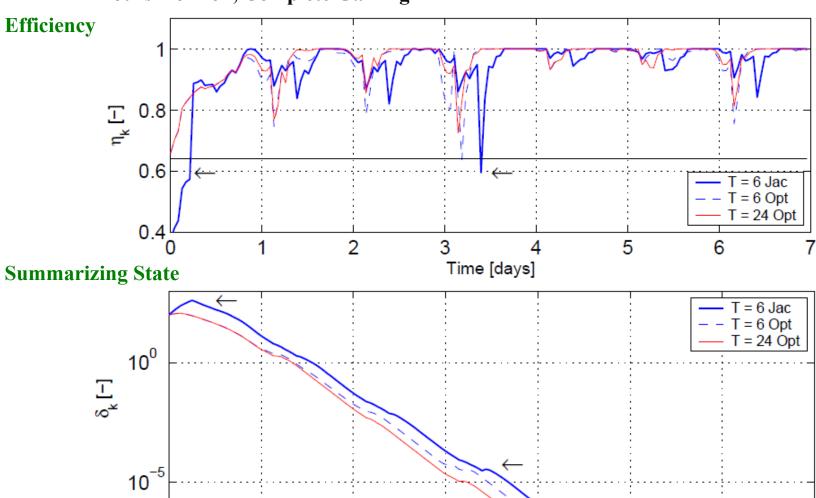
- Mechanistic Price Forecasting, Market Design and Monitoring
- Data Assimilation and State Estimation

Stability

Consider 3 Market Designs

0

- 6 Hours Horizon, Incomplete Gaming
- 6 Hours Horizon, Complete Gaming
- 24 Hours Horizon, Complete Gaming



Time [days]

6

5

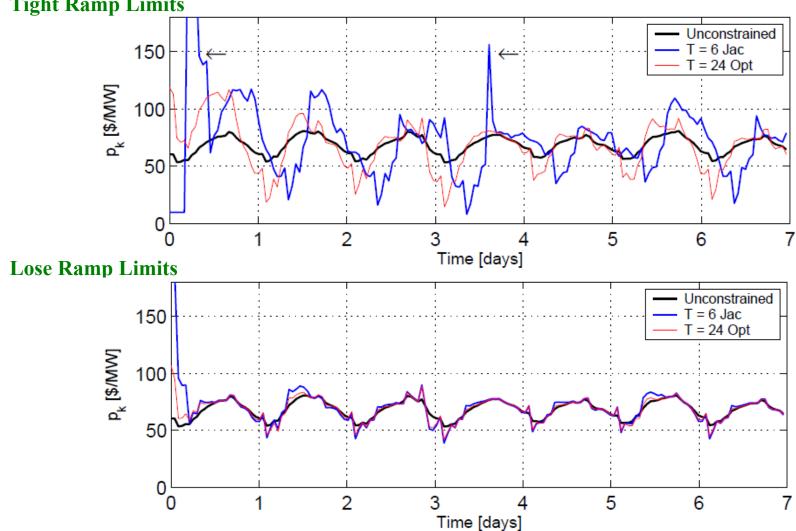
2

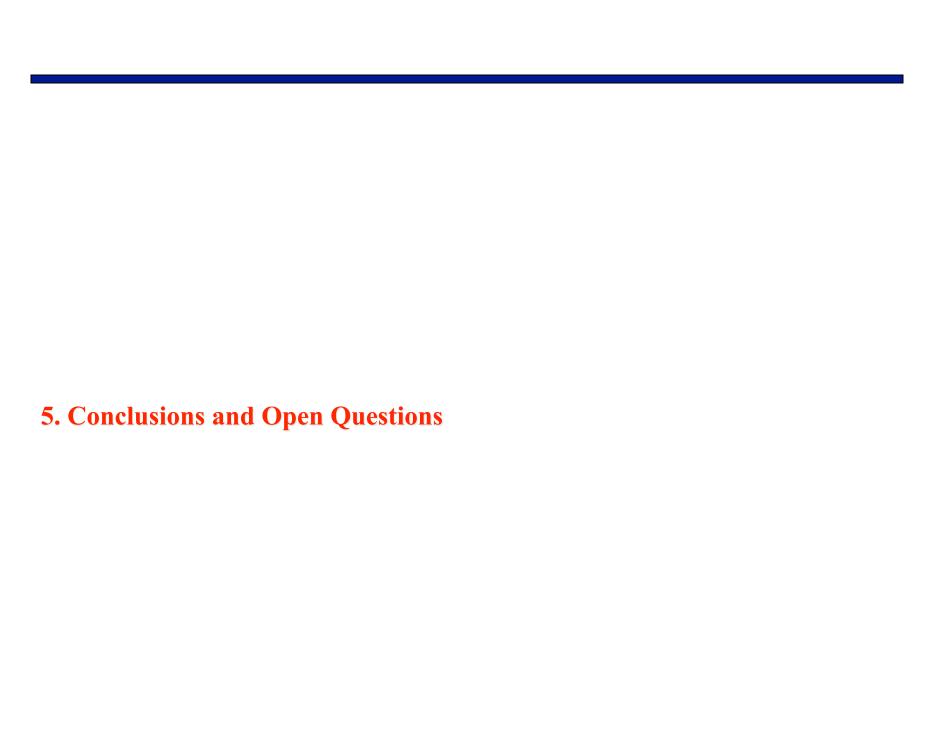
Stability

Consider 3 Market Designs

- 6 Hours Horizon, Incomplete Gaming
- 6 Hours Horizon, Complete Gaming
- 24 Hours Horizon, Complete Gaming

Tight Ramp Limits





Conclusions and Open Questions

Predictive Control Provides a Framework for Market Analysis

- Advantage: Captures Mechanistic and Physical Effects
- Advantage: Captures Decision-Making Rationale (Receding Horizon)
- Issue: Market Inherently Dynamic (No Natural Equilibrium)
- Issue: Market Stability and Efficiency Definitions are Subjective

Potential Extensions:

- Day-Ahead and Real-Time Markets
- Stochastic Formulations (Effects of Risk on Stability)
- Distributed Optimization Algorithms
- Continuous-Time (Closer to Physical Domain)
- Alternative Designs (Stabilizing Constraints)

Alternative Frameworks: Stochastic Stability

Alternative Lyapunov Functions

Differential Variational Inequalities (Existence and Uniqueness)

A Predictive Control Perspective on Electricity Markets

Victor M. Zavala

Assistant Computational Mathematician Mathematics and Computer Science Division Argonne National Laboratory

vzavala@mcs.anl.gov

With: Mihai Anitescu and Aswin Kannan

UIUC Seminar May 5th, 2011 (Cinco de Mayo)

